Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 18.169
Filtrar
1.
PLoS One ; 19(4): e0295342, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38568979

RESUMEN

It has been shown that observing a face being touched or moving in synchrony with our own face increases self-identification with the former which might alter both cognitive and affective processes. The induction of this phenomenon, termed enfacement illusion, has often relied on laboratory tools that are unavailable to a large audience. However, digital face filters applications are nowadays regularly used and might provide an interesting tool to study similar mechanisms in a wider population. Digital filters are able to render our faces in real time while changing important facial features, for example, rendering them more masculine or feminine according to normative standards. Recent literature using full-body illusions has shown that participants' own gender identity shifts when embodying a different gendered avatar. Here we studied whether participants' filtered faces, observed while moving in synchrony with their own face, may induce an enfacement illusion and if so, modulate their gender identity. We collected data from 35 female and 33 male participants who observed a stereotypically gender mismatched version of themselves either moving synchronously or asynchronously with their own face on a screen. Our findings showed a successful induction of the enfacement illusion in the synchronous condition according to a questionnaire addressing the feelings of ownership, agency and perceived similarity. However, we found no evidence of gender identity being modulated, neither in explicit nor in implicit measures of gender identification. We discuss the distinction between full-body and facial processing and the relevance of studying widely accessible devices that may impact the sense of a bodily self and our cognition, emotion and behaviour.


Asunto(s)
Ilusiones , Percepción del Tacto , Humanos , Masculino , Femenino , Identidad de Género , Autoimagen , Tacto
2.
Cell Rep ; 43(4): 113991, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38573855

RESUMEN

The brain receives constant tactile input, but only a subset guides ongoing behavior. Actions associated with tactile stimuli thus endow them with behavioral relevance. It remains unclear how the relevance of tactile stimuli affects processing in the somatosensory (S1) cortex. We developed a cross-modal selection task in which head-fixed mice switched between responding to tactile stimuli in the presence of visual distractors or to visual stimuli in the presence of tactile distractors using licking movements to the left or right side in different blocks of trials. S1 spiking encoded tactile stimuli, licking actions, and direction of licking in response to tactile but not visual stimuli. Bidirectional optogenetic manipulations showed that sensory-motor activity in S1 guided behavior when touch but not vision was relevant. Our results show that S1 activity and its impact on behavior depend on the actions associated with a tactile stimulus.


Asunto(s)
Corteza Somatosensorial , Animales , Ratones , Corteza Somatosensorial/fisiología , Masculino , Tacto/fisiología , Ratones Endogámicos C57BL , Optogenética , Percepción del Tacto/fisiología , Conducta Animal , Femenino
3.
Cereb Cortex ; 34(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38642106

RESUMEN

The spatial coding of tactile information is functionally essential for touch-based shape perception and motor control. However, the spatiotemporal dynamics of how tactile information is remapped from the somatotopic reference frame in the primary somatosensory cortex to the spatiotopic reference frame remains unclear. This study investigated how hand position in space or posture influences cortical somatosensory processing. Twenty-two healthy subjects received electrical stimulation to the right thumb (D1) or little finger (D5) in three position conditions: palm down on right side of the body (baseline), hand crossing the body midline (effect of position), and palm up (effect of posture). Somatosensory-evoked potentials (SEPs) were recorded using electroencephalography. One early-, two mid-, and two late-latency neurophysiological components were identified for both fingers: P50, P1, N125, P200, and N250. D1 and D5 showed different cortical activation patterns: compared with baseline, the crossing condition showed significant clustering at P1 for D1, and at P50 and N125 for D5; the change in posture showed a significant cluster at N125 for D5. Clusters predominated at centro-parietal electrodes. These results suggest that tactile remapping of fingers after electrical stimulation occurs around 100-125 ms in the parietal cortex.


Asunto(s)
Percepción del Tacto , Tacto , Humanos , Tacto/fisiología , Dedos/fisiología , Percepción del Tacto/fisiología , Mano/fisiología , Electroencefalografía , Corteza Somatosensorial
4.
MMW Fortschr Med ; 166(7): 10, 2024 04.
Artículo en Alemán | MEDLINE | ID: mdl-38637366

Asunto(s)
Tacto , Humanos
5.
Cortex ; 174: 241-255, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38582629

RESUMEN

Shape is a property that could be perceived by vision and touch, and is classically considered to be supramodal. While there is mounting evidence for the shared cognitive and neural representation space between visual and tactile shape, previous research tended to rely on dissimilarity structures between objects and had not examined the detailed properties of shape representation in the absence of vision. To address this gap, we conducted three explicit object shape knowledge production experiments with congenitally blind and sighted participants, who were asked to produce verbal features, 3D clay models, and 2D drawings of familiar objects with varying levels of tactile exposure, including tools, large nonmanipulable objects, and animals. We found that the absence of visual experience (i.e., in the blind group) led to stronger differences in animals than in tools and large objects, suggesting that direct tactile experience of objects is essential for shape representation when vision is unavailable. For tools with rich tactile/manipulation experiences, the blind produced overall good shapes comparable to the sighted, yet also showed intriguing differences. The blind group had more variations and a systematic bias in the geometric property of tools (making them stubbier than the sighted), indicating that visual experience contributes to aligning internal representations and calibrating overall object configurations, at least for tools. Taken together, the object shape representation reflects the intricate orchestration of vision, touch and language.


Asunto(s)
Ceguera , Percepción del Tacto , Humanos , Ceguera/psicología , Visión Ocular , Tacto
6.
Sci Robot ; 9(89): eadp8528, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38657090

RESUMEN

A smart suction cup uses haptics to supplement vision for exploration of objects in a grasping task.


Asunto(s)
Diseño de Equipo , Fuerza de la Mano , Robótica , Humanos , Fuerza de la Mano/fisiología , Robótica/instrumentación , Tacto , Fenómenos Biomecánicos , Mano/fisiología
7.
Nat Commun ; 15(1): 3081, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38594279

RESUMEN

Tactile sensation and vision are often both utilized for the exploration of objects that are within reach though it is not known whether or how these two distinct sensory systems combine such information. Here in mice, we used a combination of stereo photogrammetry for 3D reconstruction of the whisker array, brain-wide anatomical tracing and functional connectivity analysis to explore the possibility of tacto-visual convergence in sensory space and within the circuitry of the primary visual cortex (VISp). Strikingly, we find that stimulation of the contralateral whisker array suppresses visually evoked activity in a tacto-visual sub-region of VISp whose visual space representation closely overlaps with the whisker search space. This suppression is mediated by local fast-spiking interneurons that receive a direct cortico-cortical input predominantly from layer 6 neurons located in the posterior primary somatosensory barrel cortex (SSp-bfd). These data demonstrate functional convergence within and between two primary sensory cortical areas for multisensory object detection and recognition.


Asunto(s)
Neuronas , Tacto , Ratones , Animales , Neuronas/fisiología , Tacto/fisiología , Interneuronas , Reconocimiento en Psicología , Corteza Somatosensorial/fisiología , Vibrisas/fisiología
8.
Sci Rep ; 14(1): 8707, 2024 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622201

RESUMEN

In this study, we explored spatial-temporal dependencies and their impact on the tactile perception of moving objects. Building on previous research linking visual perception and human movement, we examined if an imputed motion mechanism operates within the tactile modality. We focused on how biological coherence between space and time, characteristic of human movement, influences tactile perception. An experiment was designed wherein participants were stimulated on their right palm with tactile patterns, either ambiguous (incongruent conditions) or non-ambiguous (congruent conditions) relative to a biological motion law (two-thirds power law) and asked to report perceived shape and associated confidence. Our findings reveal that introducing ambiguous tactile patterns (1) significantly diminishes tactile discrimination performance, implying motor features of shape recognition in vision are also observed in the tactile modality, and (2) undermines participants' response confidence, uncovering the accessibility degree of information determining the tactile percept's conscious representation. Analysis based on the Hierarchical Drift Diffusion Model unveiled the sensitivity of the evidence accumulation process to the stimulus's informational ambiguity and provides insight into tactile perception as predictive dynamics for reducing uncertainty. These discoveries deepen our understanding of tactile perception mechanisms and underscore the criticality of predictions in sensory information processing.


Asunto(s)
Percepción de Movimiento , Percepción del Tacto , Humanos , Tacto/fisiología , Percepción del Tacto/fisiología , Percepción Visual , Mano/fisiología , Movimiento/fisiología , Percepción de Movimiento/fisiología
9.
Cereb Cortex ; 34(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38602737

RESUMEN

Sensory differences are a core feature of autism spectrum disorders (ASD) and are predictive of other ASD core symptoms such as social difficulties. However, the neurobiological substrate underlying the functional relationship between sensory and social functioning is poorly understood. Here, we examined whether misregulation of structural plasticity in the somatosensory cortex modulates aberrant social functioning in BTBR mice, a mouse model for autism spectrum disorder-like phenotypes. By locally expressing a dominant-negative form of Cofilin (CofilinS3D; a key regulator of synaptic structure) in the somatosensory cortex, we tested whether somatosensory suppression of Cofilin activity alters social functioning in BTBR mice. Somatosensory Cofilin suppression altered social contact and nest-hide behavior of BTBR mice in a social colony, assessed for seven consecutive days. Subsequent behavioral testing revealed that altered social functioning is related to altered tactile sensory perception; CofilinS3D-treated BTBR mice showed a time-dependent difference in the sensory bedding preference task. These findings show that Cofilin suppression in the somatosensory cortex alters social functioning in BTBR mice and that this is associated with tactile sensory processing, a critical indicator of somatosensory functioning.


Asunto(s)
Trastorno del Espectro Autista , Corteza Somatosensorial , Animales , Ratones , Modelos Animales de Enfermedad , Factores Despolimerizantes de la Actina , Tacto
10.
Nat Commun ; 15(1): 3289, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632231

RESUMEN

Endowing textiles with perceptual function, similar to human skin, is crucial for the development of next-generation smart wearables. To date, the creation of perceptual textiles capable of sensing potential dangers and accurately pinpointing finger touch remains elusive. In this study, we present the design and fabrication of intelligent perceptual textiles capable of electrically responding to external dangers and precisely detecting human touch, based on conductive silk fibroin-based ionic hydrogel (SIH) fibers. These fibers possess excellent fracture strength (55 MPa), extensibility (530%), stable and good conductivity (0.45 S·m-1) due to oriented structures and ionic incorporation. We fabricated SIH fiber-based protective textiles that can respond to fire, water, and sharp objects, protecting robots from potential injuries. Additionally, we designed perceptual textiles that can specifically pinpoint finger touch, serving as convenient human-machine interfaces. Our work sheds new light on the design of next-generation smart wearables and the reshaping of human-machine interfaces.


Asunto(s)
Fibroínas , Seda , Humanos , Seda/química , Textiles , Conductividad Eléctrica , Fibroínas/química , Tacto
11.
Curr Biol ; 34(8): 1718-1730.e3, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38582078

RESUMEN

Recent evidence suggests that primary sensory cortical regions play a role in the integration of information from multiple sensory modalities. How primary cortical neurons integrate different sources of sensory information is unclear, partly because non-primary sensory input to a cortical sensory region is often weak or modulatory. To address this question, we take advantage of the robust representation of thermal (cooling) and tactile stimuli in mouse forelimb primary somatosensory cortex (fS1). Using a thermotactile detection task, we show that the perception of threshold-level cool or tactile information is enhanced when they are presented simultaneously, compared with presentation alone. To investigate the cortical cellular correlates of thermotactile integration, we performed in vivo extracellular recordings from fS1 in awake resting and anesthetized mice during unimodal and bimodal stimulation of the forepaw. Unimodal stimulation evoked thermal- or tactile- specific excitatory and inhibitory responses of fS1 neurons. The most prominent features of combined thermotactile stimulation are the recruitment of unimodally silent fS1 neurons, non-linear integration features, and response dynamics that favor longer response durations with additional spikes. Together, we identify quantitative and qualitative changes in cortical encoding that may underlie the improvement in perception of thermotactile surfaces during haptic exploration.


Asunto(s)
Corteza Somatosensorial , Animales , Ratones , Corteza Somatosensorial/fisiología , Tacto/fisiología , Neuronas/fisiología , Ratones Endogámicos C57BL , Miembro Anterior/fisiología , Percepción del Tacto/fisiología , Masculino , Estimulación Física
12.
Biol Lett ; 20(4): 20240025, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38565149

RESUMEN

If a congenitally blind person learns to distinguish between a cube and a sphere by touch, would they immediately recognize these objects by sight once their vision is restored? This question, posed by Molyneux in 1688, has puzzled philosophers and scientists since then. To overcome ethical and practical difficulties in the investigation of cross-modal recognition, we studied inexperienced poultry chicks, which can be reared in darkness until the moment of a visual test with no detrimental consequences. After hatching chicks in darkness, we exposed them to either tactile smooth or tactile bumpy stimuli for 24 h. Immediately after the tactile exposure, chicks were tested in a visual recognition task, during their first experience with light. At first sight, chicks that had been exposed in the tactile modality to smooth stimuli approached the visual smooth stimulus significantly more than those exposed to the tactile bumpy stimuli. These results show that visually inexperienced chicks can solve Molyneux's problem, indicating cross-modal recognition does not require previous multimodal experience. At least in this precocial species, supra-modal brain areas appear functional already at birth. This discovery paves the way for the investigation of predisposed cross-modal cognition that does not depend on visual experience.


Asunto(s)
Reconocimiento en Psicología , Tacto , Cognición , Pollos , Animales
13.
J Indian Soc Pedod Prev Dent ; 42(1): 52-57, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38616427

RESUMEN

BACKGROUND: The term "stereognosis" comes from neurology and describes the capacity to distinguish objects solely by touch. AIM: The aim of this research study was to compare the neuromotor ability of the tongue in patients with malocclusion and tongue dysfunction with and without superficial anesthesia on the tip of the tongue and hard palate. MATERIALS AND METHODS: The study included 132 patients aged 6-13 years. Using a spatula for speech therapy and a visual evaluation while swallowing saliva, all individuals were identified as having swallowing dysfunctions and divided into three groups: study group (children with malocclusions and tongue dysfunctions) - 44 patients, comparator group (children with malocclusions and without tongue dysfunctions) - 44 patients, and control group (children without malocclusions or tongue dysfunctions) - 44 patients. The Koczorowski methods were used for the stereognostic tests. RESULTS: Age, sex, and malocclusion were taken into account during the differential analysis. The study and comparison groups, study and control groups, and the comparator and control groups all showed statistically significant differences from one another. According to the results, tongue dysfunction affects patients' ability to coordinate their movements with their senses at a developing stage. CONCLUSION: Patients with malocclusions that are made worse by tongue dysfunctions have poorer oral stereognostic sensibility. Speech therapy and interdisciplinary specialist orthodontic treatment are required for individuals with impaired oral perception who are still in the developmental stage and have abnormal tongue position and function.


Asunto(s)
Anestesia Dental , Maloclusión , Humanos , Niño , Lengua , Tacto , Atención Odontológica , Maloclusión/diagnóstico
15.
JAMA Netw Open ; 7(4): e245091, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38573634

RESUMEN

Importance: Differences in patient use of health information technologies by race can adversely impact equitable access to health care services. While this digital divide is well documented, there is limited evidence of how health care systems have used interventions to narrow the gap. Objective: To compare differences in the effectiveness of patient training and portal functionality interventions implemented to increase portal use among racial groups. Design, Setting, and Participants: This secondary analysis used data from a randomized clinical trial conducted from December 15, 2016, to August 31, 2019. Data were from a single health care system and included 6 noncancer hospitals. Participants were patients who were at least 18 years of age, identified English as their preferred language, were not involuntarily confined or detained, and agreed to be provided a tablet to access the inpatient portal during their stay. Data were analyzed from September 1, 2022, to October 31, 2023. Interventions: A 2 × 2 factorial design was used to compare the inpatient portal training intervention (touch, in-person [high] vs built-in video tutorial [low]) and the portal functionality intervention (technology, full functionality [full] vs a limited subset of functions [lite]). Main Outcomes and Measures: Primary outcomes were inpatient portal use, measured by frequency and comprehensiveness of use, and use of specific portal functions. A logistic regression model was used to test the association of the estimators with the comprehensiveness use measure. Outcomes are reported as incidence rate ratios (IRRs) for the frequency outcomes or odds ratios (ORs) for the comprehensiveness outcomes with corresponding 95% CIs. Results: Of 2892 participants, 550 (19.0%) were Black individuals, 2221 (76.8%) were White individuals, and 121 (4.2%) were categorized as other race (including African, American Indian or Alaska Native, Asian or Asian American, multiple races or ethnicities, and unknown race or ethnicity). Black participants had a significantly lower frequency (IRR, 0.80 [95% CI, 0.72-0.89]) of inpatient portal use compared with White participants. Interaction effects were not observed between technology, touch, and race. Among participants who received the full technology intervention, Black participants had lower odds of being comprehensive users (OR, 0.76 [95% CI, 0.62-0.91), but interaction effects were not observed between touch and race. Conclusions and Relevance: In this study, providing in-person training or robust portal functionality did not narrow the divide between Black participants and White participants with respect to their inpatient portal use. Health systems looking to narrow the digital divide may need to consider intentional interventions that address underlying issues contributing to this inequity. Trial Registration: ClinicalTrials.gov Identifier: NCT02943109.


Asunto(s)
Portales del Paciente , Grupos Raciales , Humanos , Pacientes Internos , Tacto , Educación del Paciente como Asunto
16.
Science ; 383(6687): 1092-1095, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38452082

RESUMEN

Among vertebrates, the yolk is commonly the only form of nutritional investment offered by the female to the embryo. Some species, however, have developed parental care behaviors associated with specialized food provisioning essential for offspring survival, such as the production of lipidic-rich parental milk in mammals. Here, we show that females of the egg-laying caecilian amphibian Siphonops annulatus provide similarly lipid-rich milk to altricial hatchlings during parental care. We observed that for 2 months, S. annulatus babies ingested milk released through the maternal vent seemingly in response to tactile and acoustic stimulation by the babies. The milk, composed mainly of lipids and carbohydrates, originates from the maternal oviduct epithelium's hypertrophied glands. Our data suggest lactation in this oviparous nonmammalian species and expand the knowledge of parental care and communication in caecilians.


Asunto(s)
Anfibios , Lactancia , Leche , Oviparidad , Animales , Femenino , Anfibios/fisiología , Leche/química , Oviductos/citología , Oviductos/fisiología , Oviparidad/fisiología , Tacto , Lípidos/análisis
17.
eNeuro ; 11(3)2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38443196

RESUMEN

Touch sensation from the glabrous skin of the hand is essential for precisely controlling dexterous movements, yet the neural mechanisms by which tactile inputs influence motor circuits remain largely unexplored. By pairing air-puff tactile stimulation on the hand's glabrous skin with transcranial magnetic stimulation (TMS) over the primary motor cortex (M1), we examined the effects of tactile stimuli from single or multiple fingers on corticospinal excitability and M1's intracortical circuits. Our results showed that when we targeted the hand's first dorsal interosseous (FDI) muscle with TMS, homotopic (index finger) tactile stimulation, regardless of its point (fingertip or base), reduced corticospinal excitability. Conversely, heterotopic (ring finger) tactile stimulation had no such effect. Notably, stimulating all five fingers simultaneously led to a more pronounced decrease in corticospinal excitability than stimulating individual fingers. Furthermore, tactile stimulation significantly increased intracortical facilitation (ICF) and decreased long-interval intracortical inhibition (LICI) but did not affect short-interval intracortical inhibition (SICI). Considering the significant role of the primary somatosensory cortex (S1) in tactile processing, we also examined the effects of downregulating S1 excitability via continuous theta burst stimulation (cTBS) on tactile-motor interactions. Following cTBS, the inhibitory influence of tactile inputs on corticospinal excitability was diminished. Our findings highlight the spatial specificity of tactile inputs in influencing corticospinal excitability. Moreover, we suggest that tactile inputs distinctly modulate M1's excitatory and inhibitory pathways, with S1 being crucial in facilitating tactile-motor integration.


Asunto(s)
Corteza Motora , Tacto , Humanos , Mano , Inhibición Psicológica , Movimiento
18.
Adv Neurobiol ; 36: 907-934, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38468069

RESUMEN

People are continually exposed to the rich complexity generated by the repetition of fractal patterns at different size scales. Fractals are prevalent in natural scenery and also in patterns generated by artists and mathematicians. In this chapter, we will investigate the powerful significance of fractals for the human senses. In particular, we propose that fractals with mid-range complexity play a unique role in our visual experiences because the visual system has adapted to these prevalent natural patterns. This adaptation is evident at multiple stages of the visual system, ranging from data acquisition by the eye to processing of this data in the higher visual areas of the brain. Based on these results, we will discuss a fluency model in which the visual system processes mid-complexity fractals with relative ease. This fluency optimizes the observer's capabilities (such as enhanced attention and pattern recognition) and generates an aesthetic experience accompanied by a reduction in the observer's physiological stress levels. In addition to reviewing people's responses to viewing fractals, we will compare these responses to recent research focused on fractal sounds and fractal surface textures. We will extend our fractal fluency model to allow for stimuli across multiple senses.


Asunto(s)
Fractales , Tacto , Humanos , Reconocimiento Visual de Modelos/fisiología , Encéfalo , Atención
19.
Mil Med Res ; 11(1): 17, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38475827

RESUMEN

BACKGROUND: Tactile and mechanical pain are crucial to our interaction with the environment, yet the underpinning molecular mechanism is still elusive. Endophilin A2 (EndoA2) is an evolutionarily conserved protein that is documented in the endocytosis pathway. However, the role of EndoA2 in the regulation of mechanical sensitivity and its underlying mechanisms are currently unclear. METHODS: Male and female C57BL/6 mice (8-12 weeks) and male cynomolgus monkeys (7-10 years old) were used in our experiments. Nerve injury-, inflammatory-, and chemotherapy-induced pathological pain models were established for this study. Behavioral tests of touch, mechanical pain, heat pain, and cold pain were performed in mice and nonhuman primates. Western blotting, immunostaining, co-immunoprecipitation, proximity ligation and patch-clamp recordings were performed to gain insight into the mechanisms. RESULTS: The results showed that EndoA2 was primarily distributed in neurofilament-200-positive (NF200+) medium-to-large diameter dorsal root ganglion (DRG) neurons of mice and humans. Loss of EndoA2 in mouse NF200+ DRG neurons selectively impaired the tactile and mechanical allodynia. Furthermore, EndoA2 interacted with the mechanically sensitive ion channel Piezo2 and promoted the membrane trafficking of Piezo2 in DRG neurons. Moreover, as an adaptor protein, EndoA2 also bound to kinesin family member 5B (KIF5B), which was involved in the EndoA2-mediated membrane trafficking process of Piezo2. Loss of EndoA2 in mouse DRG neurons damaged Piezo2-mediated rapidly adapting mechanically activated currents, and re-expression of EndoA2 rescued the MA currents. In addition, interference with EndoA2 also suppressed touch sensitivity and mechanical hypersensitivity in nonhuman primates. CONCLUSIONS: Our data reveal that the KIF5B/EndoA2/Piezo2 complex is essential for Piezo2 trafficking and for sustaining transmission of touch and mechanical hypersensitivity signals. EndoA2 regulates touch and mechanical allodynia via kinesin-mediated Piezo2 trafficking in sensory neurons. Our findings identify a potential new target for the treatment of mechanical pain.


Asunto(s)
Aciltransferasas , Hiperalgesia , Canales Iónicos , Tacto , Animales , Femenino , Masculino , Ratones , Hiperalgesia/patología , Canales Iónicos/metabolismo , Cinesinas/metabolismo , Mecanotransducción Celular/fisiología , Ratones Endogámicos C57BL , Dolor , Primates , Tacto/fisiología , Aciltransferasas/metabolismo
20.
Nature ; 627(8003): 313-320, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38480964

RESUMEN

Intrinsically stretchable electronics with skin-like mechanical properties have been identified as a promising platform for emerging applications ranging from continuous physiological monitoring to real-time analysis of health conditions, to closed-loop delivery of autonomous medical treatment1-7. However, current technologies could only reach electrical performance at amorphous-silicon level (that is, charge-carrier mobility of about 1 cm2 V-1 s-1), low integration scale (for example, 54 transistors per circuit) and limited functionalities8-11. Here we report high-density, intrinsically stretchable transistors and integrated circuits with high driving ability, high operation speed and large-scale integration. They were enabled by a combination of innovations in materials, fabrication process design, device engineering and circuit design. Our intrinsically stretchable transistors exhibit an average field-effect mobility of more than 20 cm2 V-1 s-1 under 100% strain, a device density of 100,000 transistors per cm2, including interconnects and a high drive current of around 2 µA µm-1 at a supply voltage of 5 V. Notably, these achieved parameters are on par with state-of-the-art flexible transistors based on metal-oxide, carbon nanotube and polycrystalline silicon materials on plastic substrates12-14. Furthermore, we realize a large-scale integrated circuit with more than 1,000 transistors and a stage-switching frequency greater than 1 MHz, for the first time, to our knowledge, in intrinsically stretchable electronics. Moreover, we demonstrate a high-throughput braille recognition system that surpasses human skin sensing ability, enabled by an active-matrix tactile sensor array with a record-high density of 2,500 units per cm2, and a light-emitting diode display with a high refreshing speed of 60 Hz and excellent mechanical robustness. The above advancements in device performance have substantially enhanced the abilities of skin-like electronics.


Asunto(s)
Diseño de Equipo , Piel , Transistores Electrónicos , Dispositivos Electrónicos Vestibles , Humanos , Silicio , Nanotubos de Carbono , Tacto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...